Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtre
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.28.22276983

Résumé

ObjectiveWe aimed to compare clinical severity of Omicron BA.4/BA.5 infection with BA.1 and earlier variant infections among laboratory-confirmed SARS-CoV-2 cases in the Western Cape, South Africa, using timing of infection to infer the lineage/variant causing infection. MethodsWe included public sector patients aged [≥]20 years with laboratory-confirmed COVID-19 between 1-21 May 2022 (BA.4/BA.5 wave) and equivalent prior wave periods. We compared the risk between waves of (i) death and (ii) severe hospitalization/death (all within 21 days of diagnosis) using Cox regression adjusted for demographics, comorbidities, admission pressure, vaccination and prior infection. ResultsAmong 3,793 patients from the BA.4/BA.5 wave and 190,836 patients from previous waves the risk of severe hospitalization/death was similar in the BA.4/BA.5 and BA.1 waves (adjusted hazard ratio [aHR] 1.12; 95% confidence interval [CI] 0.93; 1.34). Both Omicron waves had lower risk of severe outcomes than previous waves. Prior infection (aHR 0.29, 95% CI 0.24; 0.36) and vaccination (aHR 0.17; 95% CI 0.07; 0.40 for boosted vs. no vaccine) were protective. ConclusionDisease severity was similar amongst diagnosed COVID-19 cases in the BA.4/BA.5 and BA.1 periods in the context of growing immunity against SARS-CoV-2 due to prior infection and vaccination, both of which were strongly protective.


Sujets)
Mort , COVID-19
3.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.17.22273906

Résumé

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.

4.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.476382

Résumé

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Sujets)
Crises épileptiques
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.13.22269211

Résumé

Background Emerging data suggest that SARS-CoV-2 Omicron variant of concern (VOC)is associated with reduced risk of severe disease. The extent to which this reflects a difference in the inherent virulence of Omicron, or just higher levels of population immunity, is currently not clear. Methods RdRp target delay (RTD: a difference in cycle threshold value of RdRp - E > 3.5) in the Seegene Allplex™ 2019-nCoV PCR assay is a proxy marker for the Delta VOC. The absence of this proxy marker in the period of transition to Omicron was used to identify suspected Omicron VOC infections. Cox regression was performed for the outcome of hospital admission in those who tested positive for SARS-CoV-2 on the Seegene Allplex™ assay from 1 November to 14 December 2021 in the Western Cape Province, South Africa, public sector. Vaccination status at time of diagnosis, as well as prior diagnosed infection and comorbidities, were adjusted for. Results 150 cases with RTD (proxy for Delta) and 1486 cases without RTD (proxy for Omicron) were included. Cases without RTD had a lower hazard of admission (adjusted Hazard Ratio [aHR] of 0.56, 95% confidence interval [CI] 0.34-0.91). Complete vaccination was protective of admission with an aHR of 0.45 (95%CI 0.26-0.77). Conclusion Omicron has resulted in a lower risk of hospital admission, compared to contemporaneous Delta infection in the Western Cape Province, when using the proxy marker of RTD. Under-ascertainment of reinfections with an immune escape variant like Omicron remains a challenge to accurately assessing variant virulence.

6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.12.22269148

Résumé

Objectives: We aimed to compare COVID-19 outcomes in the Omicron-driven fourth wave with prior waves in the Western Cape, the contribution of undiagnosed prior infection to differences in outcomes in a context of high seroprevalence due to prior infection, and whether protection against severe disease conferred by prior infection and/or vaccination was maintained. Methods: In this cohort study, we included public sector patients aged [≥]20 years with a laboratory confirmed COVID-19 diagnosis between 14 November-11 December 2021 (wave four) and equivalent prior wave periods. We compared the risk between waves of the following outcomes using Cox regression: death, severe hospitalization or death and any hospitalization or death (all [≤]14 days after diagnosis) adjusted for age, sex, comorbidities, geography, vaccination and prior infection. Results: We included 5,144 patients from wave four and 11,609 from prior waves. Risk of all outcomes was lower in wave four compared to the Delta-driven wave three (adjusted Hazard Ratio (aHR) [95% confidence interval (CI)] for death 0.27 [0.19; 0.38]. Risk reduction was lower when adjusting for vaccination and prior diagnosed infection (aHR:0.41, 95% CI: 0.29; 0.59) and reduced further when accounting for unascertained prior infections (aHR: 0.72). Vaccine protection was maintained in wave four (aHR for outcome of death: 0.24; 95% CI: 0.10; 0.58). Conclusions: In the Omicron-driven wave, severe COVID-19 outcomes were reduced mostly due to protection conferred by prior infection and/or vaccination, but intrinsically reduced virulence may account for an approximately 25% reduced risk of severe hospitalization or death compared to Delta.


Sujets)
COVID-19 , Mort , Infections
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.22.21268246

Résumé

The Omicron variant is characterised by more than 50 distinct mutations, the majority of which are located in the spike protein. The implications of these mutations for disease transmission, tissue tropism and diagnostic testing are still to be determined. We evaluated the relative performance of saliva and mid-turbinate swabs as RT-PCR samples for the Delta and Omicron variants. The positive percent agreement (PPA) of saliva swabs and mid-turbinate swabs to a composite standard was 71% (95% CI: 53-84%) and 100% (95% CI: 89-100%), respectively, for the Delta variant. However, for the Omicron variant saliva and mid-turbinate swabs had a 100% (95% CI: 90-100%) and 86% (95% CI: 71-94%) PPA, respectively. This finding supports ex-vivo data of altered tissue tropism from other labs for the Omicron variant. Reassessment of the diagnostic testing standard-of-care may be required as the Omicron variant becomes the dominant variant worldwide.

8.
Raquel Viana; Sikhulile Moyo; Daniel Gyamfi Amoako; Houriiyah Tegally; Cathrine Scheepers; Richard J Lessells; Jennifer Giandhari; Nicole Wolter; Josie Everatt; Andrew Rambaut; Christian Althaus; Eduan Wilkinson; Adriano Mendes; Amy Strydom; Michaela Davids; Simnikiwe Mayaphi; Simani Gaseitsiwe; Wonderful T Choga; Dorcas Maruapula; Boitumelo Zuze; Botshelo Radibe; Legodile Koopile; Roger Shapiro; Shahin Lockman; Mpaphi B. Mbulawa; Thongbotho Mphoyakgosi; Pamela Smith-Lawrence; Mosepele Mosepele; Mogomotsi Matshaba; Kereng Masupu; Mohammed Chand; Charity Joseph; Lesego Kuate-Lere; Onalethatha Lesetedi-Mafoko; Kgomotso Moruisi; Lesley Scott; Wendy Stevens; Constantinos Kurt Wibmer; Anele Mnguni; Arshad Ismail; Boitshoko Mahlangu; Darren P. Martin; Verity Hill; Rachel Colquhoun; Modisa S. Motswaledi; James Emmanuel San; Noxolo Ntuli; Gerald Motsatsi; Sureshnee Pillay; Thabo Mohale; Upasana Ramphal; Yeshnee Naidoo; Naume Tebeila; Marta Giovanetti; Koleka Mlisana; Carolyn Williamson; Nei-yuan Hsiao; Nokukhanya Msomi; Kamela Mahlakwane; Susan Engelbrecht; Tongai Maponga; Wolfgang Preiser; Zinhle Makatini; Oluwakemi Laguda-Akingba; Lavanya Singh; Ugochukwu J. Anyaneji; Monika Moir; Stephanie van Wyk; Derek Tshiabuila; Yajna Ramphal; Arisha Maharaj; Sergei Pond; Alexander G Lucaci; Steven Weaver; Maciej F Boni; Koen Deforche; Kathleen Subramoney; Diana Hardie; Gert Marais; Deelan Doolabh; Rageema Joseph; Nokuzola Mbhele; Luicer Olubayo; Arash Iranzadeh; Alexander E Zarebski; Joseph Tsui; Moritz UG Kraemer; Oliver G Pybus; Dominique Goedhals; Phillip Armand Bester; Martin M Nyaga; Peter N Mwangi; Allison Glass; Florette Treurnicht; Marietjie Venter; Jinal N. Bhiman; Anne von Gottberg; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.19.21268028

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Sujets)
Syndrome respiratoire aigu sévère
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268116

Résumé

ABSTRACT Background The SARS-CoV-2 Omicron variant of concern (VOC) almost completely replaced other variants in South Africa during November 2021, and was associated with a rapid increase in COVID-19 cases. We aimed to assess clinical severity of individuals infected with Omicron, using S Gene Target Failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. Methods We performed data linkages for (i) SARS-CoV-2 laboratory tests, (ii) COVID-19 case data, (iii) genome data, and (iv) the DATCOV national hospital surveillance system for the whole of South Africa. For cases identified using Thermo Fisher TaqPath COVID-19 PCR, infections were designated as SGTF or non-SGTF. Disease severity was assessed using multivariable logistic regression models comparing SGTF-infected individuals diagnosed between 1 October to 30 November to (i) non-SGTF in the same period, and (ii) Delta infections diagnosed between April and November 2021. Results From 1 October through 6 December 2021, 161,328 COVID-19 cases were reported nationally; 38,282 were tested using TaqPath PCR and 29,721 SGTF infections were identified. The proportion of SGTF infections increased from 3% in early October (week 39) to 98% in early December (week 48). On multivariable analysis, after controlling for factors associated with hospitalisation, individuals with SGTF infection had lower odds of being admitted to hospital compared to non-SGTF infections (adjusted odds ratio (aOR) 0.2, 95% confidence interval (CI) 0.1-0.3). Among hospitalised individuals, after controlling for factors associated with severe disease, the odds of severe disease did not differ between SGTF-infected individuals compared to non-SGTF individuals diagnosed during the same time period (aOR 0.7, 95% CI 0.3-1.4). Compared to earlier Delta infections, after controlling for factors associated with severe disease, SGTF-infected individuals had a lower odds of severe disease (aOR 0.3, 95% CI 0.2-0.5). Conclusion Early analyses suggest a reduced risk of hospitalisation among SGTF-infected individuals when compared to non-SGTF infected individuals in the same time period. Once hospitalised, risk of severe disease was similar for SGTF- and non-SGTF infected individuals, while SGTF-infected individuals had a reduced risk of severe disease when compared to earlier Delta-infected individuals. Some of this reducton is likely a result of high population immunity.


Sujets)
COVID-19
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.04.21265916

Résumé

ABSTRACT Background The SARS-CoV-2 Beta variant, associated with immune escape and higher transmissibility, drove a more severe second COVID-19 wave in South Africa. Individual patient level characteristics and outcomes with the Beta variant are not well characterized. Methods We performed a retrospective cohort study comparing disease severity and inpatient mortality of COVID-19 pneumonia between the first and second wave periods at a referral hospital in Cape Town, South Africa. Beta variant infection was confirmed by genomic sequencing. Outcomes were analyzed with logistic regression and accelerated failure time models. Results 1,182 patients were included: 571 during the first wave period and 611 from the second wave. Beta variant accounted for 97% of infections in the second wave. There was no difference in crude in-hospital mortality between wave periods (first wave 22.2%, second wave 22.1%; p = 0.9). Time to death was decreased with higher weekly hospital admissions (16%; 95% CI, 8 to 24 for every 50-patient increase), age (18%; 95% CI, 12 to 24 for every 10-year increase) and hypertension (31%; 95% CI, 12 to 46). Corticosteroid use delayed time to death by 2-fold (95% CI, 1.5 to 3.0). Admission during the second wave decreased time to death after adjustment for other predictors, but this did not reach statistical significance (24%; 95% CI, 47 to -2). There was no effect of HIV on survival. Conclusions There was a trend towards earlier mortality during the second COVID-19 wave driven by the Beta variant, suggesting a possible biological basis. Use of oral prednisone was strongly protective. Key points In Cape Town, South Africa, the second wave of COVID-19, dominated by the Beta variant, was associated with decreased time to inpatient death after adjustment for age, comorbidities, steroid use, and admission numbers. Use of oral prednisone was strongly protective.


Sujets)
COVID-19 , Infections à VIH , Hypertension artérielle
11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.23.21265412

Résumé

A novel proxy for the Delta variant, RNA-dependent RNA polymerase target delay in the Seegene Allplex™ 2019-nCoV PCR assay, was associated with higher mortality (adjusted Odds Ratio 1.45 [95%CI 1.13-1.86]), compared to presumptive Beta infection, in the Western Cape, South Africa (April-July 2021). Prior diagnosed infection and vaccination were protective.

12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.01.21264408

Résumé

Routine SARS-CoV-2 surveillance in the Western Cape region of South Africa (January-August 2021) found a reduced PCR amplification efficiency of the RdRp gene target of the Seegene, Allplex 2019-nCoV diagnostic assay when detecting the Delta variant. We propose that this can be used as a surrogate for variant detection.

13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.23.21264018

Résumé

The Beta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in South Africa in late 2020 and rapidly became the dominant variant, causing over 95% of infections in the country during and after the second epidemic wave. Here we show rapid replacement of the Beta variant by the Delta variant, a highly transmissible variant of concern (VOC) that emerged in India and subsequently spread around the world. The Delta variant was imported to South Africa primarily from India, spread rapidly in large monophyletic clusters to all provinces, and became dominant within three months of introduction. This was associated with a resurgence in community transmission, leading to a third wave which was associated with a high number of deaths. We estimated a growth advantage for the Delta variant in South Africa of 0.089 (95% confidence interval [CI] 0.084-0.093) per day which corresponds to a transmission advantage of 46% (95% CI 44-48) compared to the Beta variant. These data provide additional support for the increased transmissibility of the Delta variant relative to other VOC and highlight how dynamic shifts in the distribution of variants contribute to the ongoing public health threat.


Sujets)
Infections à coronavirus
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.20.21262342

Résumé

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The emergence of C.1.2, associated with a high substitution rate, includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 VOC/VOIs. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta showed high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.

15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.24.21261037

Résumé

The Johnson and Johnson Ad26.COV2.S single dose vaccine, designed as an emergency response to the pandemic, represents an attractive option for the scale-up of COVID-19 vaccination in resource-limited countries. We examined the effect of prior infection with ancestral (D614G) or Beta variants on Ad26.COV2.S immunogenicity approximately 28 days post-vaccination. We compared healthcare workers who were SARS-CoV-2 naive (n=20), to those infected during the first wave prior to the emergence of Beta (n=20), and those infected in the second wave (n=20), when Beta was the dominant variant. We demonstrate that a priming exposure from infection significantly increased the magnitude of spike binding antibodies, neutralizing antibodies and antibody-dependent cellular cytotoxicity activity (ADCC) against D614G, Beta and Delta variants. The magnitude of antibody boosting was similar in both waves, despite the longer time interval between wave 1 infection and vaccination (7 months), compared to wave 2 (2 months). ADCC and binding cross-reactivity was similar in both waves. However, neutralization cross-reactivity varied by wave, showing that the antibody repertoire was shaped by the spike sequence of the infecting variant. Robust CD4 and CD8 T cell responses to spike of similar or higher magnitude as those elicited by infection were induced after vaccination. In contrast to antibody responses, prior infection was not required for the generation of high magnitude T cell responses, and T cell recognition of the Beta variant was fully preserved. Therefore, Ad26.COV2.S vaccination following prior infection, even >6 months previously, may result in substantially enhanced protection against COVID-19, of particular relevance in settings of high SARS-CoV-2 seroprevalence. Furthermore, the dominant impact of the infecting variant on neutralization breadth after vaccination has important implications for the design of second-generation vaccines based on variants of concern.


Sujets)
Déficit en protéine S , Encéphalomyélite aigüe disséminée , Effets secondaires indésirables des médicaments , COVID-19
16.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.12.21257080

Résumé

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

17.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.08.06.20169276

Résumé

The SARS-CoV-2 pandemic has resulted in shortages of both critical reagents for nucleic acid purification and highly trained staff as supply chains are strained by high demand, public health measures and frequent quarantining and isolation of staff. This created the need for alternate workflows with limited reliance on specialised reagents, equipment and staff. We present here the validation and implementation of such a workflow for preparing samples for downstream SARS-CoV-2 RT-PCR using liquid handling robots. The rapid sample preparation technique evaluated, which included sample centrifugation and heating prior to RT-PCR, showed a 97.37% (95% CI: 92.55-99.28%) positive percent agreement and 97.30% (95% CI: 90.67-99.52%) negative percent agreement compared to nucleic acid purification-based testing. This method was subsequently adopted as the primary sample preparation method in the Groote Schuur Hospital Virology Diagnostic Laboratory in Cape Town, South Africa.

SÉLECTION CITATIONS
Détails de la recherche